
FORESST: fold recognition from secondary
structure predictions of proteins
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Abstract

Motivation: A method for recognizing the three-dimensional
fold from the protein amino acid sequence based on a
combination of hidden Markov models (HMMs) and second-
ary structure prediction was recently developed for proteins
in the Mainly-Alpha structural class. Here, this methodology
is extended to Mainly-Beta and Alpha-Beta class proteins.
Compared to other fold recognition methods based on
HMMs, this approach is novel in that only secondary
structure information is used. Each HMM is trained from
known secondary structure sequences of proteins having a
similar fold. Secondary structure prediction is performed for
the amino acid sequence of a query protein. The predicted
fold of a query protein is the fold described by the model
fitting the predicted sequence the best.
Results: After model cross-validation, the success rate on 44
test proteins covering the three structural classes was found
to be 59%. On seven fold predictions performed prior to the
publication of experimental structure, the success rate was
71%. In conclusion, this approach manages to capture
important information about the fold of a protein embedded
in the length and arrangement of the predicted helices,
strands and coils along the polypeptide chain. When a more
extensive library of HMMs representing the universe of
known structural families is available (work in progress), the
program will allow rapid screening of genomic databases
and sequence annotation when fold similarity is not detect-
able from the amino acid sequence.
Availability: FORESST web server at http://absal-
pha.dcrt.nih.gov:8008/ for the library of HMMs of structural
families used in this paper. FORESST web server at
http://www.tigr.org/ for a more extensive library of HMMs
(work in progress).
Contact: valedf@tigr.org; munson@helix.nih.gov; garnier@
helix.nih.gov

Introduction

Both de novo design and understanding of the biological func-
tion of a protein require the knowledge of the relationship be-
tween its amino acid sequence and its three-dimensional (3D)
structure. Ab initio prediction of protein 3D structure from the
amino acid sequence alone remains a challenging problem. A
useful approximate solution to this problem consists of
modeling the unknown structure of a protein sequence with
the structure of an evolutionarily related protein (Browne et
al., 1969; Greer, 1991). This approach depends on the quality
of the sequence alignment to the related protein. Below a se-
quence identity of ∼25%, sequence alignments often become
unreliable, although the proteins may indeed be related and
may share a common fold and function (Schneider and
Sander, 1991; Doolittle, 1992; Jones and Thornton, 1993).

It has been observed that during evolution, the 3D structure
of a protein is more conserved than its sequence (Chothia and
Lesk, 1986). In order to detect the similarity of fold between
sequences of low or undetectable sequence identity, optimal
sequence threading methods have been developed [see Bry-
ant (1996) for references]. These methods thread a sequence
through known tertiary structures using profile or empirical
contact potentials to judge the quality of fit. Some of these
methods primarily use secondary structure information to re-
late protein sequence and its structure. Sheridan et al. (1985)
generated a set of possible folds for a query protein by align-
ing its secondary structure sequence to that experimentally
determined for proteins of known 3D structure. Unfortunate-
ly, they did not test this procedure using the predicted sec-
ondary structure sequence of the query protein. Russell et al.
(1996) mapped predicted secondary structure segments, he-
lices or β strands, to known secondary structure and used
various filters to screen out irrelevant topologies. Hubbard
and Park (1995) used amino acid sequence-based hidden
Markov models (HMMs) and predictions of secondary
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Fig. 1. Schematic representation of the training and testing procedure.

structures, in the case where a high β-strand content is pre-
dicted, with a strand-pairing potential used to predict the
β-sheet topology. Rost (1995) and Fischer and Eisenberg
(1996) combined various characteristics of the protein se-
quence, e.g. solvent accessibility or amino acid substitution
matrices, with the predicted secondary structure in attempt-
ing to recognize a fold. Rice and Eisenberg (1997) extended
this approach by developing a multi-dimensional substitu-
tion matrix which includes amino acid class, solvent accessi-
bility and secondary structure predictions from the PHD
server. We recently reported an approach to fold recognition
based solely on secondary structure predictions for proteins
of Mainly-Alpha structural class (Di Francesco et al., 1997a)
using HMMs (Rabiner, 1989) of protein folds. Here, we
present an extension of this work to the other structural
classes, Mainly-Beta and Alpha-Beta, and thereby show the
generality of this approach for recognizing a wider variety of
existing folds. The accuracy of the method, 59–64% of cor-
rectly recognized folds for 44 tested proteins, was prospec-
tively confirmed, achieving five correct fold predictions out
of seven (71%) performed prior to knowledge of the experi-
mental structures (Di Francesco et al., 1997a,b). This ap-

proach, implemented in the program named FORESST (for
FOld REcognition from Secondary STructures), offers the
advantage of allowing rapid screening of genomic databases
and presents a useful alternative to other threading methods.

Materials and methods

The overall procedure involved in developing HMMs of pro-
tein structural topologies and validating them in their fold
recognition capabilities is presented in Figure 1. A brief
description of the methodology follows; further details can
be found in Di Francesco et al. (1997a).

Hidden Markov models of protein folds

The HMM architecture proposed by Krogh et al. (1994) is
adopted in this work. Hidden Markov models of protein
folds, such as globins or TIM barrels, describe in a probabil-
istic way the structural similarity and diversity of proteins
having similar folds, such as conserved regions and inserted
or deleted loops or domains. This is achieved by means of a
first-order Markov chain of the hidden states of the models:
match, insert and delete, corresponding to each residue in the
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protein chain. To implement such models, the software pack-
age Sequence Alignment and Modeling (SAM) (Hughey and
Krogh, 1995), Versions 1.1 and 1.3.1, was modified as fol-
lows. Instead of having each match and insert state produce an
observable nucleotide or amino acid, our models produce a
secondary structure state: helix (H), strand (E) or coil (C). The
reduction in alphabet size for model building (three characters
instead of 20 for the different amino acid types) greatly re-
duces the number of model parameters to estimate (the transi-
tion probabilities between the hidden states and the observa-
tion symbol probability distributions associated to either the
match or the insert states). A model is trained on a set of un-
aligned observed secondary structure sequences of proteins of
a structural family and produces a residue-by-residue align-
ment of the secondary structure states. Transition probability
prior distributions (Hogg and Craig, 1978) are set to the de-
fault values in the SAM software package. Observation sym-
bol probability prior distributions for most of the HMMs are
set to the frequencies of the three secondary structure states of
the sequences in the training set. Proteins with similar folds
were selected from the hierarchical database of protein struc-
tures CATH, Versions Jan. 1995, 1.0 and 1.1 (Orengo et al.,
1993, 1994), at the topology level. Proteins in the same topo-
logy family are grouped based on both the overall shape and
connectivity of the secondary structures. The proteins in each
model training set were selected to maximize the diversity of
sequences while having a sufficient number of structures to
train the models of folds. The lower the percentage amino acid
identity in the sequences of the model training set, the more
heterogeneity can be found in their secondary structure se-
quences, and consequently the more generalized is the result-
ing HMM. The list of proteins in each model training set is
available from the authors upon request.

Scoring

For each HMM, the normalized negative log-odds score
(NLO) is calculated for the predicted secondary structure se-
quences of the proteins in a control database and of the query
protein. The score is based on a ratio of the probability that
the particular sequence arises from the model to the probabil-
ity that it arises from a null model based on the average sec-
ondary structural composition of the training sequences in
each model match states. The more negative the NLO score,
the better the model fits the sequence. The negative log-odds
scores are normalized by the length of each sequence. For
each model, the assigned normalized score of the query is
ranked against the scores of the control database proteins so
that the best low ranks (i.e. rank 1, 2, etc.) were associated
with the most negative scores. Ranks were utilized, rather
than NLO scores, because scores from different models are
not directly comparable, but depend strongly on the model
length, the scored sequence length and the prior distributions

used for model training. The model assigning the lowest rank
to the query sequence becomes the predicted fold, even when
the rank is not number one. For example, if the globin-like
test protein 1eca is assigned a score by the HMM of the glo-
bin-like structural family which ranks sixth, while the scores
assigned by the HMMs of the wrong structural families are
ranked seventh or worse, the globin fold of 1eca would be
declared to be correctly recognized. Whenever a test protein
is assigned scores that rank 20th or worse by all the models,
no fold prediction is carried out for that sequence.

Cross-validated training of models

To test whether correct fold recognition is attained in the
presence of low or undetectable sequence similarity between
proteins with similar folds, the models were trained with
cross-validation. For each test protein sequence (see below),
a model was trained on the other proteins having the same
topology that were <25% sequence identical to the test pro-
tein. This cross-validation procedure sometimes reduces the
number of proteins used in the training set considerably. For
the EF-Hand proteins, it was necessary to raise the cut-off to
30% in order to have enough proteins to train the model.

The control database and the test set

The control database consists of a non-redundant set of 137
proteins representing some of the known folds. [PDB names
(Bernstein et al., 1977) of the control database polypeptide
chains, suffixed with the chain identifiers: 1ace, 1acx,
1ak3A, 1azu, 1bbpA, 1bds, 1bmv1, 1bmv2, 1cc5, 1cd4,
1cdtA, 1colA, 1cox, 1crn, 1cseI, 1eca, 1etu, 1f3g, 1fc2C,
1fdlH, 1fdx, 1fkf, 1fxiA, 1gd1O, 1gly, 1gmfA, 1gp1A,
1hddC, 1hip, 1hrhA, 1l58, 1lap, 1lib, 1mcpL, 1msbA,
1nsbA, 1ovoA, 1paz, 1pi2, 1pyp, 1r092, 1rbp, 1rhd, 1s01,
1sdhA, 1sh1, 1tgsI, 1tnfA, 1ubq, 1wsyA, 1wsyB, 256bA,
2aat, 2alp, 2cab, 2ccyA, 2cpkE, 2cyp, 2fnr, 2fxb, 2gbp, 2gcr,
2gn5, 2hipA, 2hmzA, 2i1b, 2ifb, 2lh4, 2lhb, 2ltnA, 2ltnB,
2mev4, 2or1L, 2pabA, 2pcy, 2phh, 2pk4, 2rspA, 2sarA,
2scpA, 2sns, 2stv, 2tgpI, 2tmvP, 2tscA, 2utgA, 2wrpR, 3ait,
3b5c, 3blm, 3cla, 3cln, 3fgf, 3gapA, 3hmgA, 3hmgB, 3icb,
3pgm, 3rnt, 3timA, 4bp2, 4cms, 4cpv, 4fxn, 4gr1, 4pfk,
4rhv1, 4rhv3, 4rhv4, 4sgbI, 4ts1A, 4xiaA, 5cytR, 5er2E,
5hvpA, 5ldh, 5lyz, 5p21, 6acn, 6cpa, 6cpp, 6cts, 6dfr, 6tmnE,
7catA, 7icd, 7rsa, 8abp, 8adh, 9apiA, 9apiB, 9pap, 9wgaA,
1ak1, 1exf, 1sro, 3dhq. The last 4 proteins in the control data-
base list were target proteins for fold recognition for CASP2.
The structure of 3dhq is not yet available in PDB.] The ma-
jority of them (81%) are a subset of a non-redundant database
of 125 proteins collected by Rost and Sander (1993). Addi-
tional protein sequences have been added to it such that the
pairwise sequence identity is <25%.

Forty-four proteins from this data set were used for fold rec-
ognition belonging to 14 different CATH topologies. Sixteen
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proteins belonged to the Mainly-Alpha class, 15 to the Mainly-
Beta class and 13 to the Alpha-Beta class. For each test protein,
cross-validated training was performed, thereby obtaining 44
models. Each of the 44 proteins was then scored by each of the
44 cross-validated HMMs and ranked appropriately.

Jack-knife cross-validated secondary structure predictions
for the proteins in the control database, including the test pro-
teins, were obtained using the algorithm QL (Munson et al.,
1994) and homologous sequences with an average prediction
accuracy Q3 = 68% (Q3 is the percentage of correctly pre-
dicted residues in the three conformations).

Results

Fold recognition

Fold recognition of a test protein was considered successful
when its predicted secondary structure sequence attained
lower rank with the cross-validated HMM of its true fold
than with other HMMs. For each model, the ranking of the
test protein is in comparison to the scores achieved by the
predicted sequences of proteins in the control database hav-
ing different topologies. The summary of the fold recogni-
tion results is presented in Table 1. The fold topology was
correctly identified for 26 of 44 proteins (59%). Another two
(2ccyA and 5cytR) of the 44 obtained the same rank by the
HMM of their true topology and by the HMM of another fold
(± in Table 1). Including these two, the overall success rate
becomes 64%. The sequence 2ccyA obtained rank 1 by the
cross-validated models of its own fold, but also by the five
cross-validated models of the globins in the test set (data not

shown). All the proteins whose fold was considered to be
correctly recognized obtained scores having ranks lower
than 10, and 24 of them, including 2ccyA and 5cytR, ob-
tained rank = 5.

The fold recognition success rates for each class, Mainly-
Alpha, Mainly-Beta and Alpha-Beta, were 63% (75% if one
also includes the ± cases), 40% and 77%, respectively. Mainly-
Beta protein folds are not as easily placed into the correct fold
families as the folds in the two other classes. The average Q3
accuracy measure for secondary structure prediction of pro-
teins in the Mainly-Alpha and Alpha-Beta classes is 76.6 and
70.7%, respectively, while the average Q3 for Mainly-Beta
proteins is only 66.1%, ∼4.5 standard deviations lower than
for Mainly-Alpha (Table 1). There are five proteins whose
incorrect predicted topology belongs to the wrong structural
class: the Mainly-Alpha proteins 5cytR and 2tmvP, and the
proteins in the Alpha-Beta class (4xiaA, 8adh, 2fxb). Per-
haps the most surprising cases are the helical proteins 5cytR
and 2tmvP, which were both predicted to have a topology in
the Mainly-Beta class. Contrary to what one would expect,
this is not due to a high predicted content of β-strand residues
for those two sequences. In fact, for example, the fraction of
predicted helix and strand residues of 5cytR is 31 and 11%,
respectively. The wrong class prediction of 5cytR is mainly
due to long predicted coil and short predicted β-strand re-
gions that match coil and β-strand regions in the consensus
structure of the predicted immunoglobulin-like topology. In-
sert regions are found in the consensus structure of immuno-
globulin-like proteins where helices are predicted in the
5cytR sequence.

Table 1. Results of fold recognition of the test proteins

Class and protein topologya Protein name Q3 (%)b Topology
recognitionc

Correct topology
model rankd

Wrong topology predictione

Mainly-Alpha

Globin-like 1eca 73.5 + 6

2lhb 71.8 – 3 Granulocyte colony-stimulating factor

1sdh 71.2 + 2

2lh4 69.9 – 3 Granulocyte colony-stimulating factor

1colA 71.6 + 3

Cytochrome C550 1cc5 84.3 + 1

5cytR 68.0 ± 5 Immunoglobulin-like

Four-helix bundle [Hemerythrin (Met),
b it A]

2hmzA 81.6 + 2
subunit A] 256bA 87.7 + 1

2ccyA 85.8 ± 1 Globin-like OB folds

2tmvP 66.9 – >20

EF-Hand 4cpv 75.9 + 6

3icb 93.3 + 1

3cln 86.7 + 1

2scpA 56.9 – >20 None
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Table 1. continued

Class and protein topologya Protein name Q3 (%)b Topology
recognitionc

Correct topology
model rankd

Wrong topology predictione

Granulocyte colony-stimulating factor
(Form II RCG-CSFII) subunit A

1gmfA 80.7 + 1

Mainly-Beta
Li li (St t idi b it A)

1bbpA 70.5 + 1
Lipocalin (Streptavidin, subunit A) 1rbp 62.1 – >20 Immunoglobulin-like

1lib 52.7 – >20 None

2ifb 55 – >20 Immunoglobulin-like

Elongation factor TU, domain 3 2alp 63.6 – 4 Immunoglobulin-like

Immunoglobulin-like, 1 domainf 2pcy 76.8 – >20 OB folds

1paz 78.3 – 15 Lipocalin (Streptavidin, subunit A)

1azu 67.7 – >20 OB folds

2pabA 54.4 – >20 None

1acx 69.2 + 5

3ait 68.9 + 5

Immunoglobulin-like, 2 domainf 3cd4 65.9 + 4

1fdlH 70.6 + 1

1mcpL 63.6 + 3

OB folds 2sns 73.0 – 4 Immunoglobulin-like

Alpha-Beta
Fl t i 390 b it A

3timA 79.5 + 5
Flavoprotein 390, subunit A 4xiaA 73.8 – 8 Globin-like

1wsyA 83.2 + 2

Nitrogenase molybdenum-iron protein,
b it A d i 3 1 d i f

1etu 64.4 + 1
subunit A, domain 3. 1 domainf

4fxn 71.7 + 8

5p21 69.2 + 2

Nitrogenase molybdenum-iron protein,
b it A d i 3 2 d i f

8abp 64.3 + 3
subunit A, domain 3, 2 domainf

2gbp 70.2 + 3

5ldh 63.1 + 10

8adh 64.4 – 18 Elongation factor TU, domain 3

4pfk 74.0 + 2

1gd1O 65.9 + 5

Crambin 2fxb 75.3 – 6 OB folds

Average Q3 71.3

aTopology names correspond to version 1.1 of CATH (Orengo et al., 1993, 1994).
bCorrectly predicted residues in three states, helix, strand and coil, after cross-validation with QL method and evolutionary information when available. Q3 is
calculated with respect to the DSSP assignments of observed secondary structures (Kabsch and Sander, 1983).
c+ indicates correct fold recognition, – indicates wrong fold recognition. ± indicates ambiguous cases in which the test protein was assigned identical, low ranks
by the model of the correct topology and by a model of the wrong topology. Of a total of 44 test proteins, the fold topology was correctly identified for 26 (59%).
If one also considers the two ambiguous cases as correct, the percentage of correctly identified folds is 64%.
dThese are ranks of the NLO score assigned by the cross-validated model of the correct topology of the test protein. For each HMM, the rank of a test protein
is calculated after removal of the scores assigned to the true positives for that specific topology model in the control database. For example, rank 5 means that
four proteins of the control database were ranked higher and they all were false positives.
eThis column contains the wrongly predicted topology name for the test protein in those cases in which the fold is not correctly recognized (–) or when the fold
prediction is ambiguous (±). ‘None’ indicates that the test protein was not predicted to have any fold since it did not achieve a rank >20 with any of the models.
fThe CATH topology group was divided into two parts, one containing one-domain protein sequences and the other containing two-domains, which may or may
not belong to the same topology group.
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In general, cross-validated training of the HMM increases
the ranking of the scores of the test proteins by one or two
positions. However, there are cases, such as the lipocalin,
immunoglobulin-like (1 domain), and flavoprotein 390
HMMs, for which cross-validated training considerably in-
creases the ranks of the scores of certain proteins. For in-
stance, the lipocalin proteins 1rbp, 1lib and 2ifb had a rank
of 1, 6 and 1, respectively (data not shown), while, with
cross-validated training, the three proteins have rank >20
(Table 1). The immunoglobulin-like proteins 2pcy and 1paz
had ranks 2 and 1, respectively, when the members of their
homology family were not removed from the training set of
immunoglobilin-like HMM (compare with Table 1). For two
other test proteins, 4cpv and 2sns, their ranks went up from
1 to 6 and 4, respectively.

The FORESST technique is here used to identify proteins
in the control database that are structurally similar, but have
low sequence identity with the test protein. We wished to
assess whether sequence homology detection tools used to
search the control database would also associate the same
proteins from the structural point of view. Using each of the
44 test proteins, both BLAST (Altschul et al., 1990) and
SSEARCH [Smith and Waterman algorithm from the
FASTA package (Pearson, 1996)] searches of the control
database were performed, seeking significant homologies
between the query sequence and the proteins in the control
database. If a significant similarity is found, one can immedi-
ately associate a protein fold to the test sequence. Note that,
according to the CATH database, only the 44 test proteins in
the control database belong to the 14 structural topologies
represented by the HMMs. The remaining proteins in the
control database belong to topologies that are different from
those represented by the HMMs used here. For 33 test pro-
teins, no significant similarity (cut-off value: P < 0.01) with
any other protein in the control database could be found with
either method. The pairwise sequence alignment scores were
significant for only 25% of the test proteins. For four of these
proteins, 1lib, 2fib, 2pcy and 1paz, the fold was also not cor-
rectly recognized with the HMMs. However, sequence ho-
mology detection tools could not identify topologically simi-
lar proteins in the control database as well as the HMMs.

Results of blind experiments of fold recognition

Fold recognition predictions prior to the knowledge of the
structural data for a test protein are of particular interest since
they correspond to real experimental conditions. Here we
briefly discuss the results of fold recognition predictions for
seven additional proteins whose structure was unknown at
the time of the prediction. Two target sequences were those
of interleukin-6 (hIL6) and leptin, the mouse obese gene
product; five others were prediction targets for the second
Critical Assessment of techniques for protein Structure Pre-

diction (CASP2), held at Asilomar, CA, in December 1996.
For those proteins, the predicted secondary structures were
obtained using several programs: QL (Munson et al., 1994),
GOR-IV (Garnier et al., 1996), SIMPA (Levin and Garnier,
1988) (Version 96), PREDATOR (Frishman and Argos,
1996) and PHD (Rost and Sander, 1993) with evolutionary
information when available. The use of several prediction
algorithms increases the chance of having a predicted se-
quence of secondary structure elements with a smaller
number of mistakes. Moreover, since these proteins did not
have detectable sequence similarity to any protein of known
fold, this search for the correct topology used models that
were not cross-validated, in order to increase the set of poss-
ible structures represented by each model.

Both leptin and hIL6 were predicted to have the helical
cytokine topology (Di Francesco et al., 1997a). The recently
published NMR structure of leptin (Kline et al., 1997) re-
veals that its topology is indeed similar to that of four-helix-
bundle short-chain cytokines. For hIL6, an NMR structure
(Xu et al., 1996) and an X-ray structure at 1.9 Å resolution
(Somers et al., 1997) have now been published. Both experi-
mental structures indicate the four-helix bundle of the long-
chain cytokine topology, as was anticipated by our studies.

The CASP2 target proteins were polyribonucleotide nu-
cleotidyltransferase (T0004, 1sro), 3-dehydroquinase
(T0014, 3dhq), ferrochelatase (T0020, 1ak1), elongation
factor TU, domain 3 fold for exfoliative toxin A (T0031,
1exf) and β-cryptogein (T0032, 1beo). Three fold predic-
tions were correct: two Mainly-Beta fold types—an OB fold
for polyribonucleotide nucleotidyltransferase and an elonga-
tion factor TU, domain 3 fold for exfoliative toxin A; and an
Alpha-Beta fold—a TIM Barrel for 3-dehydroquinase. A
fourth prediction for ferrochelatase would have been correct
if we had an HMM for the topology of the two-domain ni-
trogenase molybdenum-iron proteins (NMIP), subunit A,
domain 3. At that time, we only had a model for one-domain
proteins of that topology. The fifth prediction for β-crypto-
gein was wrongly attributed to the Mainly-Alpha fold phos-
pholipase A2, whereas the experimental X-ray structure re-
vealed it to be a unique previously unobserved fold.

For the three targets whose fold was correctly predicted, a
comparison was made by the assessors of CASP2 between
the HMM alignments and the structure-based alignments of
the experimental structures of the target proteins with the
PDB structure. This comparison showed that the percentage
of correctly aligned residues (ASns) ranged between 16 and
29%, and the mean alignment shift error (Shft) was between
1.4 and 6.2 residues. Further details of these predictions are
reported elsewhere (Di Francesco et al., 1997b) and a direct
comparison of the performance of this method with that of
other fold recognition approaches can be found in the pro-
ceedings of CASP2 (Levitt, 1997; Marchler-Bauer et al.,
1997).
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Discussion

Hidden Markov models provide a stochastic description of
the consensus structure and the structural variations, such as
extra secondary structure elements and differences in chain
length, of proteins that have the same overall topology. The
first-order Markov chains of the hidden states imply that in-
sertions, deletions or matches depend only on the preceding
hidden state. This is certainly not adequate to describe real
protein structures fully, but these models serve only as a first
approximation of protein folds which may be improved by,
for example, encoding a minimum length for regions with
match states and secondary structure elements of some speci-
fied type. The fold recognition accuracy of the models and
the alignment quality may be enhanced by taking into ac-
count the secondary structure prediction probabilities and
other biochemical aspects of the query sequence, such as the
hydrophobicity profile. In Di Francesco et al. (1997c),
another use of the HMMs of protein folds was shown which
consists of refining the secondary structure prediction of a
query sequence with the HMM of its predicted structural to-
pology. Since the HMMs describe protein folds, they effec-
tively incorporate global structural information that can be
used in the secondary structure prediction scheme. The use
of the HMMs of the predicted folds to modify QL predicted
sequences provided an improvement in prediction accuracy
Q3 of 3%.

The motivation for training HMMs of protein folds at the
topology level of the CATH structural classification, rather
than at the homology superfamily level at which the proteins
are evolutionarily related, followed from the need for a suffi-
cient number of proteins for the HMM training sets and the
need to perform model validation. Cross-validated training
required the elimination of proteins with significant similar-
ity to the test protein from the model training set. Often, an
entire homology family for the test protein was removed,
with the consequence that the reduced training set did not
contain the protein structures most similar to the query pro-
tein. This cross-validation procedure is, therefore, a more se-
vere test of the method than in actual applications where the
HMM is trained with a set of sequences representing all the
known structures of proteins belonging to a certain topology
level of CATH.

In prospective blind predictions discussed here, those for
leptin, interleukin-6 and the five CASP2 proteins, several
predicted secondary structure sequences were obtained with
various algorithms for each query sequence, thereby increas-
ing the likelihood of having a better quality prediction. It was
shown previously (Di Francesco et al., 1997a), and addi-
tional evidence is available (data not shown), that the rec-
ognition capabilities of the models would increase consider-
ably if one could use experimentally derived secondary
structure sequences, such as those obtained at the early stages

of structure determination NMR protocols. It was out of the
scope of the present work to investigate the effect of the vari-
ous secondary structure prediction algorithms on the per-
formance of this fold recognition approach. It should be ob-
served that the fold recognition success rate obtained here by
this approach is also likely to be affected as a more extensive
library of HMMs of structural families becomes available,
since the likelihood of having false positives and negatives
will be higher. A more extensive library of HMMs, represen-
tative of a larger set of the known protein structural families,
is currently being built. It will be used to calculate the effect
of a larger number of HMMs on the method’s performance
and will soon be available (work in progress) to the scientific
community on the Internet at http://www.tigr.org/.

The choice of the proteins for model training proved to be
crucial in those cases in which proteins have multiple struc-
tural domains. An illustrative example is shown in Figure 2,
where it can be observed that some proteins having the sub-
unit A topology of NMIP received poor scores by the two-
domain model of that topology, even using observed se-
quences. Indeed the best scores corresponding to the lowest
three ranks are assigned to two-domain proteins, while the
worst two scores (Figure 2a, filled bars, rank 29 and 59) are
in fact of the one-domain proteins 5p21 and 4fxn. The re-
maining one-domain protein having this topology in the test
set, 1etu, obtained a score that was ranked in the lowest 10.
On the other hand, when training the model for one-domain
proteins in this topology (data not shown), 5p21, 1etu and
4fxn were assigned ranks 1, 1 and 6, respectively, with pre-
dicted sequences. Multi-domain proteins had rank 14 or
higher with the one-domain model of NMIP. There are also
two-domain proteins receiving poor scores by the two-do-
main model. The domains of those proteins typically consist
of non-adjacent segments of the protein chain, such as when
the N and the C termini together form the structural domain
of the topology of interest, e.g. proteins 8adh or 1gd1O. It has
been observed (Hughey and Krogh, 1996; Barrett et al.,
1997) that there is a linear dependence of the HMM scores
on the protein sequence length, whose effect is more evident
when scoring short sequences with long models (such is the
case of one-domain proteins scored by two-domain models),
where model length is defined as the number of match posi-
tions in the model. In order to skip match positions, short
sequences use several delete states that do not emit secondary
structure states and thereby give rise to poor scores, and
therefore false negatives.

The results of Table 1 are obtained with cross-validated
predicted secondary structures. It is noticeable that Mainly-
Alpha and Alpha-Beta proteins have a higher fold recogni-
tion success rate, 63% (or 75%, including the ± cases) and
77%, than Mainly-Beta proteins at 40%. One might expect
Alpha-Beta proteins to carry more information compared to
Mainly-Alpha and Mainly-Beta proteins, because the sec-
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Fig. 2. Histograms of NLO scores assigned to the 137 proteins in the
control database by the un-cross-validated HMM trained on proteins
with the two-domain nitrogenase molybdenum-iron proteins
(NMIP). Filled bars show the scores of proteins with the NMIP
topology (true positives), including one-domain and multi-domain
proteins. The scores of the proteins in the control database not having
any structural domain in the NMIP topology (true negatives) are
indicated by hashed bars. (a) The score distributions for observed
secondary structures. (b) The score distributions for predicted
secondary structures. The distribution of scores obtained with
predicted secondary structure sequences is narrower than that with
observed sequences and the true positives (in filled bars) are not as
easily distinguished from other proteins as when observed sequences
are used. The distribution of scores assigned to the control database
of observed secondary structure sequences provides an indication of
how well the model of two-domain NMIP topology distinguishes
true positives from true negatives. The distribution of scores for the
predicted sequences, which corresponds to more realistic experi-
mental conditions, shows the degrading effect of errors made during
secondary structure prediction. Even with observed structure
sequences, though, the NMIP model does not fit some NMIP protein
sequences well, as indicated by less negative, and in one case
positive, scores. (A positive score indicates that the model fits less
well than the null model.) This deficiency is due mainly to the fact
that one-domain proteins having the NMIP topology were con-
sidered as true positives for the two-domain NMIP model.

ondary structure sequence of proteins in the latter two groups
mostly consists of only two letters ({H,C} or {E,C}, respect-
ively) instead of a sequence of three letters. This expectation
is realized at least with respect to the Mainly-Beta class.
However, the fold recognition prediction accuracy for each
class appears to be correlated to the secondary structure pre-
diction accuracy. It is well known that secondary structure
prediction algorithms do not predict β-strand residues as well
as the residues having the helical or coil conformation, which

is probably due to the non-locality of residue contacts and
hydrogen bonds formed in β sheets.

In general, it is difficult to compare success rates for fold
recognition between various methodologies: for example,
some methods use gapped while others use ungapped thread-
ing, there are often differences in the test sets used and in the
reported accuracy measures. Moreover, the threading analy-
sis presents some inherent difficulties, such as, first, the
existence of many acceptable structural models for a query
sequence and, second, many possible sequence-to-structure
alignments (Lemer et al., 1995; Levitt, 1997). Prediction ex-
periments such as CASP2 are well suited to comparison of
the performances of different methods, since the various ap-
proaches are tested on the same set of proteins and the same
accuracy measures are applied for evaluation by independent
assessors. In that experimental context, this approach was
found to have sustained an overall good performance in both
fold recognition and in threading accuracy (Levitt, 1997;
Marchler-Bauer et al., 1997). This result is a substantial in-
dication of the potential of this approach relative to other ap-
proaches. However, it should be noticed that in CASP2 this
approach has been used together with additional information
about the target sequences deriving from other sources, such
as from the literature or from biological insights of the pre-
diction team members (Di Francesco et al., 1997b). There-
fore, the fold recognition success rate obtained in CASP2
does not entirely reflect the inherent capabilities of this ap-
proach. Since the set of target proteins was too small (only
seven) to constitute a statistically representative sample,
more blind prediction experiments of the CASP type will
allow for more definitive comparisons of various approaches
to fold recognition.

To conclude, helices and strands have been commonly rec-
ognized as important protein structural features. Their ar-
rangement in space (Richardson, 1981) and their connectiv-
ity (Robson and Garnier, 1986) allow us to describe and clas-
sify their 3D fold (Orengo et al., 1993; Murzin et al., 1995).
As some secondary structure prediction schemes currently
achieve an average Q3 of 65–75%, it has been shown here,
for a variety of folds from three different structural classes,
that indeed enough information is embedded into the length
and nature of the predicted secondary structures along the
amino acid sequence to characterize a fold topology with an
accuracy of 60–70%.

Because of its limited requirement for CPU time, FO-
RESST is suitable for screening large genomic databases. It
may be used as a complement to sequence-based tools when
analyzing genomic sequences and attempting to assign a bio-
logical role to hypothetical proteins. In fact, for 59% of the
proteins in the test set, this approach was capable of detecting
fold similarity among protein sequences in the control data-
base, while only 25% of those proteins could be found to be
structurally similar using sensitive algorithms such as
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BLASTP and SSEARCH. This approach should also benefit
from future improvements in secondary structure predictions
and possibly of higher order Markov chains.
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